Purchased Power and Fuel Adjustment Clauses October 2010

Need For FAC and PPA

- Protect margins from changes in fuel and/or purchased power cost
- Fuel cost variability
 - Natural gas
 - Coal
 - Oil
- Purchased power cost variability
 - Wholesale rate increases
 - Changes in wholesale rate design (demand/energy relationship
 - Changes in purchase load factor due to weather or the addition or loss of a large load

Regulatory Precedent

- FERC and many state jurisdictions allow for some type of fuel cost recovery mechanism
- Allows the utility to recover its more volatile costs (fuel) without having to change base rates each time its costs change
- Dollar for dollar matching of cost recovery with costs
- Does not permit additional margin recovery
- Regulatory review to ensure proper administration of the mechanism

Regulatory Criteria

- An authoritative 1991 report issued by the National Regulatory Research Institute, the research arm of the National Association of Regulatory Utility Commissions (NARUC) identified the following three reasons for implementing FACs/PPAs/PGAs:
 - The cost constitutes a significant or large component of the utility's cost
 - The cost changes are volatile and unpredictable
 - The cost is largely outside the control of the utility

Fuel Adjustment Clauses

- Generally found in regulated jurisdictions
- Used by companies who own generation.
- Allows for the recovery of fuel and purchased power energy related expenses
- Is generally calculated as a deviation from a base level of expenses included in base rates, although in some cases the FAC includes 100% of fuel and purchased power energy

Fuel Adjustment Clauses continued

- Calculated on a per kWh basis
 - For example, a charge or credit per kWh equal to the amount by which the utility's actual fuel costs deviate from 2.0¢/kWh
- True-up mechanism to ensure dollar for dollar recovery of costs
- Is usually calculated on a monthly basis using a single month of expenses
- Production assets and demand related costs are in base rates and do not impact the FAC

- Purchased Power Adjustment Clause (PPA)
 - Used by companies who do not own a significant amount of generation
 - Allows recovery of purchased power and any fuel
 - Is generally calculated as a deviation from a base level of expenses included in base rates, although in some cases the PPA includes 100% of purchased power and fuel cost

- Purchased Power Adjustment Clause continued
 - Generally calculated on a per kWh basis, although a small percentage of some utilities will have both a demand component and an energy component
 - For example, a charge or credit per kWh equal to the amount by which the utility's actual purchased power costs deviate from 4.0¢/kWh
 - Is generally not calculated on a monthly basis based on a single month of cost because of the wide swings in the adjustment from month to month due to production assets and demand costs being included in the purchased power cost

- Purchased Power Adjustment Clause continued
 - May or may not have a true-up mechanism that ensure dollar for dollar recovery of cost
 - Occasionally see margin as a component

How They Work

- Determine the unit base cost that was included in base rates
- Look at actual or estimated costs over a specified period (monthly, quarterly, annually)
- Those costs are unitized, usually over sales

How They Work

- The unitized actual cost is then compared to the unit base cost built into base rates
 - If the actual unit cost is higher than what was included in base rates, a charge will be included on future bills
 - If the actual unit cost is lower than what was included in base rates, a credit will be included on future bills

How They Work

- True-up mechanism that compares the actual cost to what has been recovered through base rates and the application of the PPA
 - If the utility has recovered less than its actual cost, a charge will be set up to recover the difference over a specified period of time
 - If the utility has recovered more than its actual cost, a credit will be set up to refund the difference over a specified period of time

Types of Purchased Power Adjustment Mechanisms

- Calculated annually
- Calculated quarterly
- Calculated bi-annually
- Calculated monthly
- Calculated monthly using a 12 month rolling average

Calculated annually

- Look at forecasted or historical Purchased
 Power Costs for a 12 month period
- Factor is fixed for entire year
- Should be "Trued-up" at end of the year
- No monthly swings in the factor
- Utility absorbs the swings

Calculated monthly

- Calculate the factor each and every month using a single expense month
- Different factor each month
- Can be calculated exactly if utility can calculate the factor based on actual billings that will apply each month
- Otherwise a true-up is preferrable
- Can have extreme fluctuations from month to month (maybe 1.5 cents or more)
- Customer absorbs the swings

Calculated using a 12 month rolling average

- Calculate the factor every month
- Factor varies every month, but not as much as with using a single month's cost
- True up at end of the year
- Both customer and cooperative absorb the swing

12 month rolling average

	12-Month		Average	Base Rate	
	Purchase		Purchase	Purchase	
	Power	12-Month	Power	Power	
Month	Cost	Sales	Cost	Cost	PPA
Jan	\$9,100,000.00	181,900,000	0.05003	0.05000	0.00003
Feb	\$9,600,000.00	191,800,000	0.05005	0.05000	0.00005
Mar	\$9,200,000.00	184,300,000	0.04992	0.05000	(0.0008)
Apr	\$9,300,000.00	185,800,000	0.05005	0.05000	0.00005
Мау	\$8,900,000.00	177,900,000	0.05003	0.05000	0.00003
Jun	\$9,000,000.00	179,850,000	0.05004	0.05000	0.00004
Jul	\$9,400,000.00	188,090,000	0.04998	0.05000	(0.00002)
Aug	\$9,500,000.00	189,900,000	0.05003	0.05000	0.00003
Sep	\$9,600,000.00	191,850,000	0.05004	0.05000	0.00004
Oct	\$9,700,000.00	193,900,000	0.05003	0.05000	0.00003
Nov	\$9,700,000.00	194,039,000	0.04999	0.05000	(0.00001)
Dec	\$9,800,000.00	196,000,000	0.05000	0.05000	-

Calculated using a 3 month rolling average

- Calculate the factor every month
- Factor varies every month, but not as much
 - More seasonal variances
- True up at end of the year
- Both absorb the swing

3 month rolling average

3 Month Rolling Average						
		Three Month		Rolling	Base Rate	
		Purchase		3-Month	Purchase	
		Power Cost	Three Month	Purchased Power	Power	
Month	Sales	2nd Prev Month	Sales	Cost	Cost	PPA
Jan	16,700,000	\$2,104,000	40,670,000	0.05173	0.05200	(0.00027)
Feb	14,400,000	\$2,256,000	42,650,000	0.05290	0.05200	0.00090
Mar	15,200,000	\$2,388,000	46,950,000	0.05086	0.05200	(0.00114)
Apr	13,700,000	\$2,426,000	48,250,000	0.05028	0.05200	(0.00172)
May	12,500,000	\$2,311,000	46,300,000	0.04991	0.05200	(0.00209)
Jun	15,100,000	\$2,120,000	43,300,000	0.04896	0.05200	(0.00304)
Jul	15,110,000	\$1,970,000	41,400,000	0.04758	0.05200	(0.00442)
Aug	15,900,000	\$2,049,000	41,300,000	0.04961	0.05200	(0.00239)
Sep	15,170,000	\$2,375,000	42,710,000	0.05561	0.05200	0.00361
Oct	12,400,000	\$2,672,000	46,110,000	0.05795	0.05200	0.00595
Nov	13,100,000	\$2,556,000	46,180,000	0.05535	0.05200	0.00335
Dec	17,150,000	\$2,289,000	43,470,000	0.05266	0.05200	0.00066

Formula for an PPA

- $\mathsf{PPA} = (\mathsf{C}/\mathsf{AS}) \mathsf{B} + \mathsf{R}$
- C= Total purchased power costs
- AS = Actual retail sales
- B = Purchased power in base rates
- R = (Over)/under Recovery

Formula for an PPA Over / (Under) Recovery

- R = (PPB + BAL PPR) / S
- PPB = Purchased Power Cost billed from power supplier.
- BAL= (R * Kwh sales applicable to R) (PPB– PPR + BAL) from the previous 12 month period.
- PPR=Purchased Power Cost recovered from customers through the application of base rates and the PPA.
- S = Expected Kwh Sales for the next billing period.

Why Adopt FACs and PPAs?

- Many utilities eliminated FACs and PPAs to capture the benefit of declining fuel and purchased power costs
- With fuel and purchased power price volatility, utilities need FACs and PPAs to prevent price volatility from degrading their financial position

Benefits of Efficient FACs and PPACs

- Sends proper price signals to customers
- Avoids constantly cycling between rate increases and rate decreases
- Allows cooperatives to operate with a lower margin